Welcome C.E.T.I.S No. 43

official website of the educational institution

Natural Science

Natural science is a major branch of science, that tries to explain and predict nature's phenomena, based on empirical evidence. In natural science, hypotheses must be verified scientifically to be regarded as scientific theory.

History

Some scholars trace the origins of natural science as far back as pre-literate human societies, where understanding the natural world was necessary for survival.

"Earth Science"

Earth science or Geoscience is an all-embracing term referring to the fields of science dealing with planet Earth

Friday, November 28, 2014

Links of Interest


Links Of Interest

All blog content structurally " just click on the topic of your interest "
Some videos you find on the blog








Some pages that you might find useful.
Just give a click on the image


"ENJOY BLOG"

Methodology

Methodology


Methodologies vary depending on the nature of the subjects being studied. Studies typically fall into one of three categories: observational, experimental, or theoretical. Earth scientists often conduct sophisticated computer analysis or go to many of the world's most exotic locations to study Earth phenomena (e.g. Antarctica or hot spot island chains).
A foundational idea within the study Earth science is the notion of uniformitarianism. Uniformitarianism dictates that "ancient geologic features are interpreted by understanding active processes that are readily observed."[citation needed] In other words, any geologic processes at work in the present have operated in the same ways throughout geologic time. This enables those who study Earth's history to apply knowledge of how Earth processes operate in the present to gain insight into how the planet has evolved and changed throughout deep history.

Earth´s Atmosphere

Earth's atmosphere


The troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up Earth's atmosphere. In all, the atmosphere is made up of about 78.0% nitrogen, 20.9% oxygen, and 0.92% argon. 75% of the gases in the atmosphere are located within the troposphere, the bottom-most layer. The remaining one percent of the atmosphere (all but the nitrogen, oxygen, and argon) contains small amounts of other gases including CO2 and water vapors. Water vapors and CO2 allow the Earth's atmosphere to catch and hold the Sun's energy through a phenomenon called the greenhouse effect. This allows Earth's surface to be warm enough to have liquid water and support life.


Earth´s Interior

Earth's interior



Plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of energy transformations in the Earth's crust.
Beneath the Earth's crust lies the mantle which is heated by the radioactive decay of heavy elements. The mantle is not quite solid and consists of magma which is in a state of semi-perpetual convection. This convection process causes the lithospheric plates to move, albeit slowly. The resulting process is known as plate tectonics.
Plate tectonics might be thought of as the process by which the earth is resurfaced. Through a process called seafloor spreading, new crust is created by the flow of magma from underneath the lithosphere to the surface, through fissures, where it cools and solidifies. Through a process called subduction, oceanic crust is pushed underground — beneath the rest of the lithosphere—where it comes into contact with magma and melts—rejoining the mantle from which it originally came.

Fields Of Study

Fields of study


The following fields of science are generally categorized within the Earth sciences:
Geology describes the rocky parts of the Earth's crust (or lithosphere) and its historic development. Major subdisciplines are mineralogy and petrology, geochemistry, geomorphology, paleontology, stratigraphy, structural geology, engineering geology, and sedimentology.
Physical geography covers aspects of geomorphology, soil study, hydrology, meteorology, climatology, and biogeography.
Geophysics and geodesy investigate the shape of the Earth, its reaction to forces and its magnetic and gravity fields. Geophysicists explore the Earth's core and mantle as well as the tectonic and seismic activity of the lithosphere. Geophysics is commonly used to supplement the work of geologists in developing a comprehensive understanding of crustal geology, particularly in mineral and petroleum exploration. See Geophysical survey.
Soil science covers the outermost layer of the Earth's crust that is subject to soil formation processes (or pedosphere). Major subdisciplines include edaphology and pedology.
Ecology covers the interactions between the biota, with their natural environment. This field of study differentiates the study of the Earth, from the study of other planets in our Solar System; the Earth being the only planet teeming with life.
Hydrology (includes oceanography and limnology) describe the marine and freshwater domains of the watery parts of the Earth (or hydrosphere). Major subdisciplines include hydrogeology and physical, chemical, and biological oceanography.[citation needed]
Glaciology covers the icy parts of the Earth (or cryosphere).
Atmospheric sciences cover the gaseous parts of the Earth (or atmosphere) between the surface and the exosphere (about 1000 km). Major subdisciplines include meteorology, climatology, atmospheric chemistry, and atmospheric physics.


TimeLine



"Timeline"
"NATURAL SCIENCE" 



Thursday, November 27, 2014

Voice Note

Natural Science (Voice Note 1/6) Natural Science (Voice Note 2/6) Natural Science (Voice Note 3/6) Natural Science (Voice Note 4/6) Natural Science (Voice Note 5/6) Natural Science (Voice Note 6/6)

Earth Science

Earth Science


Earth science or Geoscience is an all-embracing term referring to the fields of science dealing with planet Earth. It is arguably a special branch of planetary science, though with a much older history.
The formal discipline of Earth sciences may include the study of the atmosphere, hydrosphere, and biosphere, as well as the solid earth. Typically, Earth scientists will use tools from physics, chemistry, biology, chronology, and mathematics to build a quantitative understanding of how the Earth system works, and how it evolved to its current state.


Tuesday, November 25, 2014

Prezi English

Modern natural science (1900–present)

Modern natural science (1900–present)


According to a famous 1923 textbook Thermodynamics and the Free Energy of Chemical Substances by the American chemist Gilbert N. Lewis and the American physical chemist Merle Randall, the natural sciences contain three great branches:
Aside from the logical and mathematical sciences, there are three great branches of natural science which stand apart by reason of the variety of far reaching deductions drawn from a small number of primary postulates — they are mechanics, electrodynamics, and thermodynamics.
Today, natural sciences are more commonly divided into life sciences, such as botany and zoology; and physical sciences, which include physics, chemistry, geology, astronomy and materials science.


19th-century developments (1800–1900)

19th-century developments (1800–1900)


By the 19th century, the study of science had come into the purview of professionals and institutions. In so doing, it gradually acquired the more modern name of natural science. The term scientist was coined by William Whewell in an 1834 review of Mary Somerville's On the Connexion of the Sciences. But the word did not enter general use until nearly the end of the same century.







Biography of the scientist who coined the term natural science:  William Whewell

Newton and the scientific revolution (1600–1800)

Newton and the scientific revolution (1600–1800)

The scientific revolution, which began to take hold in the 1600s, represented a sharp break from Aristotelian modes of inquiry. One of its principal advances was the use of the scientific method to investigate nature. Data was collected and repeatable measurements made in experiments. Scientists then formed hypotheses to explain the results of these experiments. The hypothesis was then tested using the principle of falsifiability to prove or disprove its accuracy. The natural sciences continued to be called natural philosophy, but the adoption of the scientific method took science beyond the realm of philosophical conjecture and introduced a more structured way of examining nature.

Newton, an English mathematician and physicist, was the seminal figure in the scientific revolution. Drawing on advances made in astronomy by Copernicus, Brahe and Kepler, Newton derived the universal law of gravitation and laws of motion. These laws applied both on earth and in outer space, uniting two spheres of the physical world previously thought to function independently of each other, according to separate physical rules. Newton, for example, showed that the tides were caused by the gravitational pull of the moon. Another of Newton's advances was to make mathematics a powerful explanatory tool for natural phenomena. While natural philosophers had long used mathematics as a means of measurement and analysis, its principles were not used as a means of understanding cause and effect in nature until Newton.

One of the most renowned scientists in human history .

Check out her biography .

Isaac Newton

Medieval natural philosophy (1100–1600)

Medieval natural philosophy (1100–1600)


In the late Middle Ages, Spanish philosopher Dominicus Gundissalinus translated a treatise by the earlier Arab scholar Al-Farabi called On the Sciences into Latin, calling the study of the mechanics of nature scientia naturalis, or natural science.

Gundissalinus also proposed his own classification of the natural sciences in his 1150 work On the Division of Philosophy. This was the first detailed classification of the sciences based on Greek and Arab philosophy to reach Western Europe. Gundissalinus defined natural science as "the science considering only things unabstracted and with motion," as opposed to mathematics and sciences that rely on mathematics.

 Following Al-Farabi, he then separated the sciences into eight parts, including physics, cosmology, meteorology, minerals science and plant and animal science.

Later philosophers made their own classifications of the natural sciences. Robert Kilwardby wrote On the Order of the Sciences in the 13th century that classed medicine as a mechanical science, along with agriculture, hunting and theater while defining natural science as the science that deals with bodies in motion.[36] Roger Bacon, an English friar and philosopher, wrote that natural science dealt with "a principle of motion and rest, as in the parts of the elements of fire, air, earth and water, and in all inanimate things made from them." These sciences also covered plants, animals and celestial bodies. 
Later in the 13th century, Catholic priest and theologian Thomas Aquinas defined natural science as dealing with "mobile beings" and "things which depend on matter not only for their existence, but also for their definition."

There was wide agreement among scholars in medieval times that natural science was about bodies in motion, although there was division about the inclusion of fields including medicine, music and perspective. Philosophers pondered questions including the existence of a vacuum, whether motion could produce heat, the colors of rainbows, the motion of the earth, whether elemental chemicals exist and where in the atmosphere rain is formed.

Aristotelian natural philosophy (400 B.C.–1100 A.D.)

Aristotelian natural philosophy (400 B.C.–1100 A.D.)

Later Socratic and Platonic thought focused on ethics, morals and art and did not attempt an investigation of the physical world; Plato criticized pre-Socratic thinkers as materialists and anti-religionists. Aristotle, however, a student of Plato who lived from 384 to 322 B.C., paid closer attention to the natural world in his philosophy. In his History of Animals, he described the inner workings of 110 species, including the stingray, catfish and bee. He investigated chick embryos by breaking open eggs and observing them at various stages of development. Aristotle's works were influential through the 19th century, and he is considered to be the father of biology. He also presented philosophies about physics, nature and astronomy using inductive reasoning in his works Physics and Meteorology.

While Aristotle considered natural philosophy more seriously than his predecessors, he approached it as a theoretical branch of science. Still, inspired by his work, Ancient Roman philosophers of the early first century A.D., including Lucretius, Seneca and Pliny the Elder, wrote treatises that dealt with the rules of the natural world in varying degrees of depth. Many Ancient Roman Neoplatonists of the third to the sixth centuries A.D. also adapted Aristotle's teachings on the physical world to a philosophy that emphasized spiritualism. Early medieval philosophers including Macrobius, Calcidius and Martianus Capella also examined the physical world, largely from a cosmological and cosmographical perspective, putting forth theories on the arrangement of celestial bodies and the heavens, which were posited as being composed of aether.
Aristotle's works on natural philosophy continued to be translated and studied amid the rise of the Byzantine Empire and Islam in the Middle East. A revival in mathematics and science took place during the time of the Abbasid Caliphate from the ninth century onward, when Muslim scholars expanded upon Greek and Indian natural philosophy. The words alcohol, algebra and zenith all have Arabic roots.

History

"History"

Some scholars trace the origins of natural science as far back as pre-literate human societies, where understanding the natural world was necessary for survival. People observed and built up knowledge about the behavior of animals and the usefulness of plants as food and medicine, which was passed down from generation to generation. These primitive understandings gave way to more formalized inquiry around 3,500 to 3,000 B.C. in Mesopotamian and Ancient Egyptian cultures, which produced the first known written evidence of natural philosophy, the precursor of natural science. While the writings show an interest in astronomy, mathematics and other aspects of the physical world, the ultimate aim of inquiry about nature's workings was in all cases religious or mythological, not scientific.
A tradition of scientific inquiry also emerged in Ancient China, where Taoist alchemists and philosophers experimented with elixirs to extend life and cure ailments. They focused on the yin and yang, or contrasting elements in nature; the yin was associated with femininity and coldness, while yang was associated with masculinity and warmth. The five phases – fire, earth, metal, wood and water – described a cycle of transformations in nature. Water turned into wood, which turned into fire when it burned. The ashes left by fire were earth. Using these principles, Chinese philosophers and doctors explored human anatomy, characterizing organs as predominantly yin or yang and understood the relationship between the pulse, the heart and the flow of blood in the body centuries before it became accepted in the West.
 
Little evidence survives of how Ancient Indian cultures around the Indus River understood nature, but some of their perspectives may be reflected in the Vedas, a set of sacred Hindu texts. They reveal a conception of the universe as ever-expanding and constantly being recycled and reformed. Surgeons in the Ayurvedic tradition saw health and illness as a combination of three humors: wind, bile and phlegm. A healthy life was the result of a balance between these humors. In Ayurvedic thought, the body consisted of five elements: earth, water, fire, wind and empty space. Ayurvedic surgeons performed complex surgeries and developed a detailed understanding of human anatomy.
Pre-Socratic philosophers in Ancient Greek culture brought natural philosophy a step closer to direct inquiry about cause and effect in nature between 600 and 400 B.C., although an element of magic and mythology remained. Natural phenomena such as earthquakes and eclipses were explained increasingly in the context of nature itself instead of being attributed to angry gods. Thales of Miletus, an early philosopher who lived from 625 to 546 B.C., explained earthquakes by theorizing that the world floated on water and that water was the fundamental element in nature. In the fifth century B.C., Leucippus was an early exponent of atomism, the idea that the world is made up of fundamental indivisible particles. Pythagoras applied Greek innovations in mathematics to astronomy, and suggested that the earth was spherical.

Oceanography

"Oceanography"



The serious study of oceans began in the early to mid-1900s. As a field of natural science, it is relatively young but stand-alone programs offer specializations in the subject. Though some controversies remain as to the categorization of the field under earth sciences, interdisciplinary sciences or as a separate field in its own right, most modern workers in the field agree that it has matured to a state that it has its own paradigms and practices. As such a big family of related studies spanning every aspect of the oceans is now classified under this field.





Atmospheric Science

¡Atmospheric Science!


Though sometimes considered in conjunction with the earth sciences, due to the independent development of its concepts, techniques and practices and also the fact of it having a wide range of sub disciplines under its wing, the atmospheric science is also considered a separate branch of natural science. This field studies the characteristics of different layers of the atmosphere from ground level to the edge of the time. The timescale of study also varies from days to centuries. Sometimes the field also includes the study of climatic patterns on planets other than earth.


Earth Science

EARTH SCIENCE


Earth science (also known as geoscience), is an all-embracing term for the sciences related to the planet Earth, including geology, geophysics, hydrology, meteorology, physical geography, oceanography, and soil science.
Although mining and precious stones have been human interests throughout the history of civilization, the development of the related sciences of economic geology and mineralogy did not occur until the 18th century. The study of the earth, particularly palaeontology, blossomed in the 19th century. The growth of other disciplines, such as geophysics, in the 20th century led to the development of the theory of plate tectonics in the 1960s, which has had a similar effect on the Earth sciences as the theory of evolution had on biology. Earth sciences today are closely linked to petroleum and mineral resources, climate research and to environmental assessment and remediation.


Astronomy

"Astronomy"




This discipline is the science of celestial objects and phenomena that originate outside the Earth's atmosphere. It is concerned with the evolution, physics, chemistry, meteorology, and motion of celestial objects, as well as the formation and development of the universe.
Astronomy includes the examination, study and modeling of stars, planets, comets, galaxies and the cosmos. Most of the information used by astronomers is gathered by remote observation, although some laboratory reproduction of celestial phenomena has been performed (such as the molecular chemistry of the interstellar medium).
While the origins of the study of celestial features and phenomena can be traced back to antiquity, the scientific methodology of this field began to develop in the middle of the 17th century. A key factor was Galileo's introduction of the telescope to examine the night sky in more detail.
The mathematical treatment of astronomy began with Newton's development of celestial mechanics and the laws of gravitation, although it was triggered by earlier work of astronomers such as Kepler. By the 19th century, astronomy had developed into a formal science, with the introduction of instruments such as the spectroscope and photography, along with much-improved telescopes and the creation of professional observatories.


Physics

"Physics"


Physics embodies the study of the fundamental constituents of the universe, the forces and interactions they exert on one another, and the results produced by these interactions. In general, physics is regarded as the fundamental science, because all other natural sciences use and obey the principles and laws set down by the field. Physics relies heavily on mathematics as the logical framework for formulation and quantification of principles.
The study of the principles of the universe has a long history and largely derives from direct observation and experimentation. The formulation of theories about the governing laws of the universe has been central to the study of physics from very early on, with philosophy gradually yielding to systematic, quantitative experimental testing and observation as the source of verification. Key historical developments in physics include Isaac Newton's theory of universal gravitation and classical mechanics, an understanding of electricity and its relation to magnetism, Einstein's theories of special and general relativity, the development of thermodynamics, and the quantum mechanical model of atomic and subatomic physics.
The field of physics is extremely broad, and can include such diverse studies as quantum mechanics and theoretical physics, applied physics and optics. Modern physics is becoming increasingly specialized, where researchers tend to focus on a particular area rather than being "universalists" like Isaac Newton, Albert Einstein and Lev Landau, who worked in multiple areas.



Chemistry

"Chemistry"


Constituting the scientific study of matter at the atomic and molecular scale, chemistry deals primarily with collections of atoms, such as gases, molecules, crystals, and metals. The composition, statistical properties, transformations and reactions of these materials are studied. Chemistry also involves understanding the properties and interactions of individual atoms and molecules for use in larger-scale applications.
Most chemical processes can be studied directly in a laboratory, using a series of (often well-tested) techniques for manipulating materials, as well as an understanding of the underlying processes. Chemistry is often called "the central science" because of its role in connecting the other natural sciences.
Early experiments in chemistry had their roots in the system of Alchemy, a set of beliefs combining mysticism with physical experiments. The science of chemistry began to develop with the work of Robert Boyle, the discoverer of gas, and Antoine Lavoisier, who developed the theory of the Conservation of mass.
The discovery of the chemical elements and atomic theory began to systematize this science, and researchers developed a fundamental understanding of states of matter, ions, chemical bonds and chemical reactions. The success of this science led to a complementary chemical industry that now plays a significant role in the world economy.


Biology

"Biology"




This field encompasses a set of disciplines that examines phenomena related to living organisms. The scale of study can range from sub-component biophysics up to complex ecologies. Biology is concerned with the characteristics, classification and behaviors of organisms, as well as how species were formed and their interactions with each other and the environment.

The biological fields of botany, zoology, and medicine date back to early periods of civilization, while microbiology was introduced in the 17th century with the invention of the microscope. However, it was not until the 19th century that biology became a unified science. Once scientists discovered commonalities between all living things, it was decided they were best studied as a whole.
Some key developments in biology were the discovery of genetics; Darwin's theory of evolution through natural selection; the germ theory of disease and the application of the techniques of chemistry and physics at the level of the cell or organic molecule.
Modern biology is divided into subdisciplines by the type of organism and by the scale being studied. Molecular biology is the study of the fundamental chemistry of life, while cellular biology is the examination of the cell; the basic building block of all life. At a higher level, physiology looks at the internal structure of organism, while ecology looks at how various organisms interrelate.


Branches Of Natural Science

Branches of Natural Science









                     

Criteria

"Criteria"


Philosophers of science have suggested a number of criteria, including the Karl Popper's controversial falsifiability criterion, to help them differentiate scientific endeavors from a non-scientific ones. Validity, accuracy, and social mechanisms ensuring quality control, such as peer review and repeatability of findings, are amongst the most respected criteria in present-day global scientific community.

Defining science

Karl Popper
Distinguishing between science and non-science is referred to as the demarcation problem. For example, should psychoanalysis be considered science? How about so-called creation science, the inflationary multiverse hypothesis, or macroeconomics? Karl Popper called this the central question in the philosophy of science. However, no unified account of the problem has won acceptance among philosophers, and some regard the problem as unsolvable or uninteresting.
Early attempts by the logical positivists grounded science in observation while non-science was non-observational and hence meaningless. Popper argued that the central property of science is falsifiability. That is, every genuinely scientific claim is capable of being proven false, at least in principle.
An area of study or speculation that masquerades as science in an attempt to claim a legitimacy that it would not otherwise be able to achieve is referred to as pseudoscience, fringe science, or junk science. Physicist Richard Feynman coined the term "cargo cult science" for cases in which researchers believe they are doing science because their activities have the outward appearance of it but actually lack the "kind of utter honesty" that allows their results to be rigorously evaluated. Various types of commercial advertising, ranging from hype to fraud, may fall into these categories.



Biography: Karl Popper







Natural Science

Natural Science


Natural science is a major branch of science, that tries to explain and predict nature's phenomena, based on empirical evidence. In natural science, hypotheses must be verified scientifically to be regarded as scientific theory. Validity, accuracy, and social mechanisms ensuring quality control, such as peer review and repeatability of findings, are amongst the criteria and methods used for this purpose.


Natural science can be broken into 2 main branches: biology, and physical science. Physical science is further broken down into branches, including physics, astronomy, chemistry, and Earth science. All of these branches of natural science are divided into many further specialized branches (also known as fields), and each of these is known as a "natural science".
In Western society's analytic tradition, the empirical and especially natural sciences use tools from formal sciences, such as mathematics and logic, converting information about nature into measurements which can be explained as clear statements about the "laws of nature". History and the humanities also use such methods, but rely more on qualitative research, so that social sciences are sometimes called "soft science", whereas natural sciences, insofar as emphasizing quantifiable data produced, tested, and confirmed through the scientific method are sometimes called "hard science."
Modern natural science succeeded more classical approaches to natural philosophy, usually traced to ancient Greece. Galileo, Descartes, Francis Bacon, and Newton debated the benefits of using approaches which were more mathematical and more experimental in a methodical way. Still, philosophical perspectives, conjectures, and presuppositions, often overlooked, remain requisite in natural science. Systematic data collection, including discovery science, succeed natural history, which emerged in the 16th century by describing and classifying plants, animals, minerals, and so on. Yet today, natural history suggests observational descriptions aimed at popular audiences.